A study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities

نویسندگان

  • Raji Shankar
  • Irfan Bulu
  • Rick Leijssen
  • Marko Lončar
چکیده

We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 μm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 μs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in an increase of Q-factor from 11,500 to 29,300 at 4.48 μm. After annealing in a N2 environment, optical bistability is no longer seen in our cavities. References and links 1. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, "Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity," Opt. Express 17, 21108-21117 (2009) http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-21108. 2. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=83310. 3. T. Uesugi, B. S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006), http://www.opticsinfobase.org/abstract.cfm?id=86921. 4. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-801. 5. V. R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). 6. R. A. Soref, S. J. Emelett, and A. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. a-Pure Appl. Op. 8, 840-848 (2006). 7. B. Jalali, "Silicon Photonics: Nonlinear optics in the mid-infrared," Nat. Photonics 4, 506-508 (2010). 8. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides," Nat. Photonics 4, 557-560 (2010). 9. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, "Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-bandderived pump source," Nat. Photonics 4, 561-564 (2010). 10. F. X. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O'Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, "Low propagation loss silicon-on-sapphire waveguides for the mid-infrared," Opt. Express 19, 15212-15220 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15212. 11. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, "Silicon-on-sapphire integrated waveguides for the mid-infrared," Opt. Express 18, 12127-12135 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12127. 12. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, "Silicon waveguides and ring resonators at 5.5 μm," Appl. Phys. Lett. 97, 213501 (2010). 13. R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, "Mid-infrared photonic crystal cavities in silicon," Opt. Express 19, 5579-5586 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-6-5579. 14. G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Q. Xiong, E. J. Teo, and Y. F. Hu, "Low loss silicon waveguides for the mid-infrared," Opt. Express 19, 7112-7119 (2011). 15. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221101 (2005). 16. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, "Light scattering and Fano resonances in high-Q photonic crystal nanocavities," Appl. Phys. Lett. 94, 071101 (2009). 17. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, "Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity," Opt. Express 17, 17118-17129 (2009), http://www.opticsinfobase.org/abstract.cfm?id=185892. 18. E. Weidner, S. Combrie, A. de Rossi, N. V. Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 221104 (2007). 19. W. H. P. Pernice, M. Li, and H. X. Tang, "Time-domain measurement of optical transport in silicon micro-ring resonators," Opt. Express 18, 18438-18452 (2010), http://www.opticsinfobase.org/abstract.cfm?id=205135. 20. D. K. Schroeder, Semiconductor Material and Device Characterization (Wiley Interscience, Hoboken, NJ, 2006). 21. L. Pilon, R. Kitamura, and M. Jonasz, "Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature," Appl. Optics 46, 8118-8133 (2007). 22. A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, "Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity," Phys. Rev. A 79, 043818 (2009). 23. X. G. Zhang, Electrochemistry of silicon (Kluwer Academic/Plenum Publishers, New York, 2001). 24. M. Borselli, T. J. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006). 25. Y. Yamashita, K. Namba, Y. Nakato, Y. Nishioka, and H. Kobayashi, "Spectroscopic observation of interface states of ultrathin silicon oxide," J. Appl. Phys. 79, 7051-7057 (1996). 26. H. Froitzheim, H. Lammering, and H. L. Gunter, "Energy-Loss-Spectroscopy Studies on the Adsorption of Hydrogen on Cleaved Si(111)-(2x1)Surfaces," Phys. Rev. B 27, 2278-2284 (1983).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities.

We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor,...

متن کامل

Optical field enhancement factor of Silicon and indium phosphide nano-cavities

Nano cavities based on silicon and indium phosphide materials have been comparedin this study, considering field intensity enhancement factor. The results of FDTD based simulations declare that the Si nano-cavity improves confined optical field about 7.7 times higher than the InP based nano-cavity. The introduced dielectric nano-cavities support resonance wavelength at about λ=1.55 μm.

متن کامل

The effect of cells' radius on optical filter output spectrum based on photonic crystals

In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...

متن کامل

Mid-infrared materials and devices on a Si platform for optical sensing

In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microd...

متن کامل

Optical Filter Based On Point Defects in 2D Photonic Crystal Structur

In this paper, we proposed a novel structure for designing all optical filter based on photonic crystal structure. In designing the proposed filter, we simply employed a point defect localized between input and output waveguides as wavelength selecting part of the filter. The initial form of this filter is capable of selecting optical waves at =1560 nm, the transmission efficiency of the filte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011